A BP Neural Network Based on Improved Particle Swarm Optimization and its Application in Reliability Forecasting

نویسنده

  • Heqing Li
چکیده

The basic Particle Swarm Optimization (PSO) algorithm and its principle have been introduced, the Particle Swarm Optimization has low accelerate speed and can be easy to fall into local extreme value, so the Particle Swarm Optimization based on the improved inertia weight is presented. This method means using nonlinear decreasing weight factor to change the fundamental ways of PSO. To allow full play to the approximation capability of the function of BP neural network and overcome the main shortcomings of its liability to fall into local extreme value and the study proposed a concept of applying improved PSO algorithm and BP network jointly to optimize the original weight and threshold value of network and incorporating the improved PSO algorithm into BP network to establish a improved PSO-BP network system. This method improves convergence speed and the ability to search optimal value. We apply the improved particle swarm algorithm to reliability prediction. Compared with the traditional BP method, this kind of algorithm can minimize errors and improve convergence speed at the same time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Hybridization of Artificial Neural Network and Particle Swarm Optimization Methods for Time Series Forecasting

Recently, Particle Swarm Optimization (PSO) has evolved as a promising alternative to the standard backpropagation (BP) algorithm for training Artificial Neural Networks (ANNs). PSO is advantageous due to its high search power, fast convergence rate and capability of providing global optimal solution. In this paper, the authors explore the improvements in forecasting accuracies of feedforward a...

متن کامل

Turbo-Generator Vibration Fault Diagnosis Based on PSO-BP Neural Networks

To overcome the flaws of traditional BP learning algorithm of its low convergence speed and easy falling into local extremum during turbo-generator vibration faults diagnosis, a novel algorithm called PSO-BP is proposed for artificial neural network (ANN) learning based on particle swarm optimization (PSO) in this paper. The algorithm covers the two phases. Firstly, PSO algorithm is applied to ...

متن کامل

Application of BP Neural Network Model based on Particle Swarm Optimization in Enterprise Network Information Security

The development of network technology has brought convenience to people's life, but also provides the convenience for the virus, Trojan and other destructive programs to attack the network. Then, the computer network security is becoming more and more dangerous. Accurately and scientifically predict the risk of network, it can effectively prevent the risk, and reduce the loss caused by the prob...

متن کامل

Application Research Based on Artificial Fish-swarm Neural Network in Sintering Process

Sinter tumbler strength is an important parameter in the sintering process, and has an important influence on the performance of finished sinter. Artificial fish swarm algorithm have good ability to acquire the global performance, the neural network has strong nonlinear ability and local optimization performance,; AFSA+BP algorithm combined with artificial fish swarm algorithm and BP algorithm,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013